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Abstract  Surface impedance boundary conditions (SIBC's)
are implemented in the finite-difference time-doamin (FDTD)
method to analyze the electromagnetic field around multilayer
conductors. The conducting region is replaced by an equiva-
lent surface where SIBC’s are applied locally. To incorporate
the equivalent surface impedance into the FDTD cade, at first
the surface impedance is determined in the frequency domain
by replacing the multilayer conductor by a cascade of transmis-
sion lines and calculating the total impedance matrix of the net-
work. Following this, a wide-band polynomial approximation of
the SIBC’s leads to an efficient and recursive solution of the con-
volution integrals in the time domain, As a numertcal example,
the impedance matrix of a symmetric three layer conductor is
derived and the scattering parameters are compared to the ana-
Iytical solutions. ’

I. INTRODUCTION

For many yeass, the finite-difference time-domain (FDTD)
method has been a very popular technique for the solution of
Maxwell’s equation in scattering, wave propagation, antennas
and electromagnetic compatibility problems. The modeling
of conducting sheets with finite electrical conductivity plays
an important role in the prediction of losses in microwave ¢ir-
cuits. Furthermore, an accurate characterization of shielding
surfaces is of great intrest for electromagnetic compatibility
problems. The analysis of the electromagnetic fields inside
conductors requires a cell size smaller than the penetration
depth of the current. To this end, the grid has to be refined
locally resulting in a large number of unknown field values
and a reduction of the time-step due to the Courant stability
condition. This method turns cut to be very inefficient in most
cases. In the literature, several partial solutions to this prob-
fem have been proposed [1, 2]. These approaches are lim-
ited in frequency range and can only model conductors with
a thickness larger than the skin depth. An ultra wide band ap-
proach for a single layer conductor and its application to lossy
transmission lines was discussed in [3, 4, 5].

However, microwave circuits often include composite con-
ductors due to the fabrication process. Hence, transmission
lines or membranes in micro electre-mechanical structures
(MEMS) consist of multilayer conductors made of a thick
metal layer and thin diffusion/adhesion layers. These thin
layers affect the propagation of electromagnetic waves, es-
pecially the attenuation and the dissipated power, and there-
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fore have to be taken into account when analyzing circuits or
other electronic structures. In this paper, composite conduc-
tors are replaced by an impedance matrix computed in the
frequency domain and incorporated as a surface impedance
boundary condition in the FDTD techrique. For an efficient
time domain solution of the convolution integrals, a polyno-
mial approximation of the impedance is performed. Herein, a
symmetric three layer conductor is utilized to apply and vali-
date the proposed method.

1. Two-PORT MODEL FOR SIBC’s
In this section, a two-port mode! for an arbitrary multitayer

conductor is developed in the frequency domain. An exam-
ple for such a composite conductor is shown in Fig. 1. For

Figure 1: Example for a multilayer conductor

any incident electromagnetic field with an arbitrary incident
angle, the field penetration inside the conductor region can
be described by the Helmholtz equation. If the conductor is
composed by highly conductive materials, the transmission
angle in the conductor is perpendicular to the boundary sur-
face. To this end, the penetration of the electric and magnetic
field tangential components inside the metal layers is mod-
eled by a plane wave propagation in the direction normal to
the conductor surface. For this configuration, the analytical
solution is available assuming the composite conductor as a
cascade of equivalent transmission lines. The field tangential
components at both ends of the equivalent transmission line
network are modeled in the frequency domain by the follow-
ing equations:

B\ _{ Zuls) Zuas) \ { Hh (1)
E; Zai(8)  Zaa(8) H,

where s is the complex Laplace variable.

Assuming a symmetric multilayer conductor, the impedances
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of the two-port network can easily be determined by assum-
ing a magnetic and electric wall in the center of the conduc-
tor for an even and odd excitation, respectively, As a conse-
quence, two impedances, Z° and Z° are obtained by a stag-
gered transformation

Z.”° + Z¥ anh(yedy)

ze° Zintf
ZI™r 4 Z2tanh(vyedy)

k+1 = Zk

)

of the impedance from the center to the surface boundary of
the conductor. In equation (2), Z{"" = (/sp/oy is the in-
trinsic impedance and yx = ,/3foy, is the complex propa-
gation constant of the k** layer bounded by the interfaces &
and & + 1. In view of (2), the impedances of the matrix take
the form: le = 222 = %(Ze + ZO) and Z12 = 221 =
lize - 2°).

1. FDTD IMPLEMENTATION OF SIBC’s

In this section, the two-port based surface impedance is incor-
porated in the Yee scheme as shown in Fig. 2. After a polyno-
mial approximation of the impedances in the frequency do-
main, two possible methods can be applied for an efficient
time-domain implementation. The impedance matrix im-
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Figure 2: Multilayer conductor in the Yee-mesh

plies that the tangential electric and magnetic field compo-
nents are located exactly at the boundary surface. In the Yee-
scheme however, the electric and magnetic fields are not col-
located and for this reason cannot satisfy this requirement.
Hence, taking into account the position of the magnetic field,
the corrected impedance resuits in:

e _ zZeo
mod = ZF Zeosinh(jBAR) + Zpcosh(jBAR)

()

where Zp is the wave impedance, 8 the propagation con-
stant and Ah the distance between the two planes contain-
ing the electric and magnetic field components. In general,
the distance Ah is very small so that the equation (3) can
be approximated by linearizing sinh(jSAhL) =~ jBAhR and
cosh(jBAh) #s 1. However, for w < (/022Zpco/(pd2)), 8
correction of the impedance is not necessary. Typically, equa-
tion (3} has to be applied to conductors with a low conductiv-
ity and a large total thickness in terms of the cell size.
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The impedances’ in equation (1) contain the transcenden-
tal functions /Ttanh(z) and /Ttanh(z) due to the stag-
gered impedance transformation from the center to the sur-
face boundary of the conductor. In order to obtain a rational
functional representation of the impedances Z; ;, both tran-
scendental functions are replaced by a third order rational ap-
proximation !

g+ a1z, + 0252 + 03.’53
bo + bizy + box? + bya?
with coefficients a; and b; given in Table 1. After replacing

@

\J/zcoth{x)

a; | 0.201833 0.0922242 | 4.30272e-3 | 2.99416¢e-5
b; | 0.201833 0.0249482 | 4.70416e-4 | B.47668e-7
/ztanh(x)

a; | 1.19000e-6 | 0.0478011 | 5.36751e-3 | 6.59864¢-5
b; | 0.0478138 | 0.0212851 | 8.00010e-4 | 2.32392¢-6

Table 1: Coefficients for the third order rational approxtma—
tion in the interval z € [0, 40]

the transcendental functions by their approximations, the ele-
ments of the impedance matrix in equation (1} become ratio-
nal functions of the Laplace variable s.

To include equation (1) into the FDTD method, two differ-
ent approaches are pursued: the recursive convolution method
and the billinear transformation into the Z-domain.
Adopting the recursive convolution method, the impedances
are decomposed into partial fractions in the Laplace domain:

5 a; ai + 8b;
Zii= 5
¥ ;a+q+;q+sdi+szei ©)

with Z = Z/s and a;, b;, c;, di, e; being real coefficients,
To this end, the inverse Laplace transform of equation (5) en-
ables a recursive implementation of the convolution integrals,
Applying the surface boundary condition to the Yee mesh in
the time domain and taking the field components according
to Fig. 2, the electric field components can be expressed by
the time derivatives of the magnetic field

a 5 a
BN =~ 2 g HO + 2o G HOM - ©)

+EEP = ~ 25 * %H( ™+ Za3 %

8
¥ HES O

Together with Faraday equations

-2 B =V x B0, ®
-2 =V x BV, ©

! Approximation performed in the symbolic algebra program MAPLE VII
using the module minimax of the package numapprox. Minimizing the rela-
tive error in an specified intervali for z was the optimization criterion.



the system of equaticns (6)-(9) can be solved for the tangen-
tial magnetic field components leading to a boundary condi-
tion for the magnetic field.

In the second case, the billinear transformation into the Z-
domain

21—z

ST A+ 1)

(10)

is employed in equation (1). After some algebraic manipula-
tions, rational fractions in z for the impedances Z;; are ob-
tained which yield directly a discrete form for the impedance
matrix:

+ Z a'_El(’}gln—:+l — Z biEHE;ZI“_H-I

i=0 =0
+3° c,-b-?Hg?; it an
i=0
£ B = Yo Sl
i=0 i=0
M a )
+3 b ﬁﬂ,f?g mass (12)

=0

Together with the Faraday equations (8) and (9), the system
of equations (11} and (12) can be solved for the magnetic field
components. This method has a significant advantage in that
a decomposition in partial fractions is not required and only a
straightforward algebraic calculation has to be implemented.

IV. SYMMETRIC THREE LAYER CONDUCTOR

As an numerical example, a symmetric conductor consisting
of three layers as shown in Fig. 1 is analyzed. The center
conductor has a conductivity g3 = 2.64 S/m and a thickness
~ d3 = 32mm. The conductivity of the thin layer on the top
and the bottom is 1,32 S/m and its thickness is 4 mm. For this
structure, the elements of the impedance matrix are approxi-
mated by rational fractions in the s domain according to sec-
tion 11, The relative error of the magnitude as a function of
frequency is shown in Fig. 3 and Fig. 4 for the impedances
Zy1 and Zya, respectively. The frequency in the diagram is
normalized to a reference frequency f,;, where the skin depth
is half of the conductor thickness d;. Whereas the impedance
Zy; can be approximated with an error less than 0.045 % over
a wide frequency range, the impedance Z;5 shows a larger
error in a significant smaller frequency range. An error of
0.35% can only be achieved from DC to 10 times the ref-
erence frequency f,. The reason is that the exponential decay
of the impedance Z14 leads to an enormous increase of the
error in the case of a polynomial approximation.
The rational approximation of the surface impedance is not
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Figure 3: Relative error of | Z44|; frequency is normalized to
fs = 4/ (mpaady).
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Figure 4: Relative error of | Z12[;frequency is normalized to
£y = 4/ (noads).

limited to the thickness and conductivity given in the numeri-
cal example, The method can also handle multilayer conduc-
tors, where the top and bottom layers are extremly thin com-
pared to the center conductor. However, a different relative
error is obtained as a function of the frequency.

Using the recursive convolution method, the scattering pa-
rameters of the composite conductor with a total thickness of
40 mm were extracted from the FDTD simulation and cotn-
pared to the analytic solution of the TEM problem. A cell
size of 1 mm is chosen for the grid. The magnitude and the
phase of the reflection coefficient is pictured in Fig. 5 and
Fig. 6. The simulation results agree with the exact solution
and only show a very small discrepancy at higher frequencies.
The staircase approximation of the impedances in the time-
domain causes an error in the convolution integrals at higher
frequencies when the time-step approaches the Nyquist cri-
terion. Furthermore, the accuracy for the algebraic manipula-
tions in the decomposition of the rational function into partial
fractions is limited. The higher the degree of the polynomial
the less accurate are the coefficients in the partial fractions
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Figure 5: Scattering parameters of a symmetric three layer
conductor,
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Figure 6: Scattering parameters of a symmetric three layer
conductor.

due to the finite number of digits per floating point number.
In Fig. 7, the magniiude of the reflection coefficient is shown
when the correction of the impedance according to equation
{3) is not applied. In this case, a symmetric excitation at both
ports is assumed. Without a correction of the impedance,
an error of 7.3% in the magnitude and 2.1 % in the phase
results at 10 GHz. Taking into account, that the electric and
magnetic fields are on different layers, the error is reduced to
0.36 % and 0.33 % in magnitude and phase, respectively.
The billinear method leads to the same scattering parameters
with an error comparable 1o the convolution method. How-
ever, the billinear transformation requires a high precision for
the floating point numbers when the filter coefficients are cal-
culated. For higher order polynomials resulting from conduc-
tor with several multilayers, this method becomes inefficient.
The convolution technique tums out to be a solid and stable
method and alse can be applied to more than three layers of

arbitrary lengths.
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Figure 7: Symmetric three layer conductor: Reflection for a
symmetric excitation using no correction term

CONCLUSION

A SIBC for multilayer conductor was introduced in this pa-
per. The SIBC is based on the impedance matrix of a trans-
mission line network. A rational approximation enables a sta-
ble and efficient recursive convolution method in FDTD. The
proposed method has been tested with a symmetric three layer
conductor and the scattering parameters were validated by the
analytical solutions. Based on this method, transmission line
losses in microwave circuits and electromagnetic compatibil-
ity problems can be considered as well.
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