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Absrracl Surface impedance boundary conditions (SIBC’s) 
are implemented in the finite-differeoce timedosmin (FDTD) 
method to analyze the electromagnetic field around multilayer 
conductors. The conducting region is replaced by a,, equiva- 
lent surface where SIBC’s are applied locally. To incorporate 
the equivalent surface impedance into the FDTD code, at first 
the sui-f~ce impedance is determined in the frequency domain 
by replacing the muldtayer conductor by P cascade oftrmsmis- 
sion lines and calculating the total impedance matrix of the net- 
work. Followbtg this, a wide-band polynomial appmrlmstion of 
the SfBC’a lends to an efficient and recursive solutioo of the con- 
volution integrals in the time domain. As II numelleal example, 
the impedance matrix of a symmetric three layer conductor is 
derived and the scatterinS panmeters are compared to the am,- 
lythl solutionr. 

1. INTRODUCTlON 

For many years, the finite-difference time-domain (FDTD) 
method has been a very popular technique for the solution of 
Maxwell’s equation in scattering, wave propagation, antennas 
and electromagnetic compatibility problems. The modeling 
of conducting sheets with linite electrical conductivity plays 
an important role in the prediction of losses in microwave cir- 
cuits. Furthermore, an accurate characterization of shielding 
suffaces is of great intrest for electromagnetic compatibility 
problems. The analysis of the electromagnetic fields inside 
conductors requires a cell size smaller than the penetration 
depth of the current. To this end, the grid has to be refined 
locally resulting in a large number of unknown field values 
and a reduction of the time-step due to the Coumnt stability 
condition. This method turns out to be very inefficient in must 
cases. In the literature, several partial solutions to this pmb- 
lem have been proposed [l, 21. These approaches are lim- 
ited in frequency range and can only model conductors with 
a thickness larger than the skin depth. An ultra wide band ap- 
proach for a single layer conductor and its application to lossy 
transmission lines was discussed in [3,4,5]. 
However, microwave circuits often include composite con- 
ductors due to the fabrication process. Hence, eatsmission 
lines or membranes in micro electm-mechanical st~ctures 
(MEMS) consist of multilayer conductors made of a thick 
metal layer and thin diffusion/adhesion layers. These thin 
layers affect the propagation of electromagnetic waves, es- 
pecially the attenuation and the dissipated power, and there- 

fore have to be taken into account when analyzing circuits or 
other electronic stmchu~s. In this paper, composite conduc- 
tors are replaced by an impedance matrix computed in the 
frequency domain and incorporated as a surface impedance 
boundary condition in the FDTD technique. For an efficient 
time domain solution of the convolution integrals, a polyno- 
mial approximation of the impedance is performed. Herein, a 
symmetric three layer conductor is utilized tu apply and vali- 
date the proposed method. 

II. TWO-PORT MODEL FOR SEC’s 

In this section, a two-port model for au arbitrary multilayer 
conductor is developed in the frequency domain. An exam- 
ple for such a composite conductor is shown in Fig. 1. For 

Figure 1: Example for a multilayer conductor 

any incident electromagnetic field with an arbitrary incident 
angle, the field penetration inside the conductor region can 
be described by the Hehnholtz equation. If the conductor is 
composed by highly conductive materials, the transmission 
angle in the conductor is perpendicular to the boundary SW- 
face. To this end, the penetration of the electric and magnetic 
field tangential components inside the metal layers is mod- 
eled by a plane wave propagation in the direction normal tu 
the conductor surface. For this configuration, the analytical 
solution is available assuming the composite conductor as a 
cascade of equivalent transmission lines. The field tangential 
components at both ends of the equivalent transmission line 
network are modeled in the frequency domain by the follow- 
ing equations: 

(Z>=( 
&l(S) ad4 I Jfl 

>( > Zz,(s) &2(s) 6 (1) 
where B is the complex Laplace variable. 
Assuming a symmetric multilayer conductor, the impedances 
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of the two-port network can easily be determined by assum- 
ing a magnetic and elechic wall in tbe center of the conduc- 
tor for an even and odd excitation, respectively, As a consc- 
quence, two impedances, Zc and Z” are obtained by a stag 
gcrcd transformation 

of the impedance fmm the center to the surface boundary of 
the conductor. In equation (2). Zpt’ = m is tbe in- 
trinsic impedance and 7r = e is the complex pmpa- 
gation constant of the k’” layer bounded by the interfaces k 
and k + 1. In view of (2), the impedances of the matrix take 
the form: 21, = Za, = f(Z” + Z”) and Z,, = Zzl = 
)(P - Z”). 

In this section, the two-poti based surface impedance is incor- 
porated in the Yee scheme as shown in Fig. 2. AAer a polyno- 
mial approximation of the impedances in the frequency do- 
main, two possible methods can be applied for an efficient 
time-domain implementation. The impedance matrix im- 

Figure 2: Multilayer conductor in the Yce-mesh 

plies that the tangential electric and magnetic field compo- 
nents are located exactly at the boundary surface. Ln the Yce- 
scheme however, tbe electric and magnetic fields are not col- 
located and for this reason cannot satisfy this requirement. 
Hence, taking into account the position of the magnetic field, 
the corrected impedance results in: 

ze+- 
ZC,O 

mod = zF ZC+inb(jj3Ah) + Zpcosh(jfiAh) (3) 

where ZF is tbe wave impedance, fi the propagation con- 
stant and Ah the distance between the two planes contain- 
ing the electric and magnetic field components. In general, 
tbe distance Ah is very small so that the equation (3) can 
be approximated by linearizing sinh(j@Ah) = jPAh and 
cosh(jpAh) IJ 1. However, for w (< (fiZ&(&)), a 
correction of tbe impedance is not necessary. Typically, equa- 
tion (3) has to be applied to conductors with a low conductiv- 
ity and a large total thickness in terms of the cell size. 

The impedances’ in equation (1) contain the tmnscendcn- 
tal functions @anb(z) and &a&(z) due to the stag 
gcrcd impedance transformation from the center to the SW- 
face boundary of the conductor. In order to obtain a rational 
functional representation of the impedances Zi,j, both tram 
scandental functions are replaced by a third order rational ap- 
proximation ’ 

(4) 

with coefficients oi and bi given in Table 1. AAer replacing 

Table I: Coefficients for the third order rational appmxima- 
tion in the interval z E [0,40] 

the transcendental functions by their approximations, the ele- 
ments ofthe impedance matrix in equation (1) become ratio- 
nal functions ofthc Laplace variable a. 
To include equation (1) into the FDTD method, two diffcr- 
ent approaches are pursued: the recursive convolution method 
and the billinear transformation into the Z-domain. 
Adopting the recursive convoluh‘on method, the impedances 
are decomposed into partial fractions in the Laplace domain: 

with 2 = Z/s and (li. bi, G, di, ei being real coefficients. 
To this end, tbe inverse Laplace transform of equation (5) en- 
ables a recursive implementation of the convolution integrals. 
Applying the surface boundary condition to the Yee mesh in 
the time domain and taking the field components according 
to Fig. 2, the electric field components can be expressed by 
the time derivatives of the magnetic field 

(6) 
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the system of equations (6)-(g) can be solved for the tangen- 
tial magnetic field components leading to a boundary condi- 
tion for the magnetic field. 
In the second case, the billinear transjormation into the Z- 
domain 

(10) 

is employed in equation (I). After some algebraic manipula- 
tions, rational fractions in I for the impedances Zij are ob- 
tained which yield directly a discrete form for the impedance 
matrix: 

Together with the Faraday equations (8) and (9), the system 
ofequations (I I) and (12) can be solved for the magnetic field 
components. This method has a significant advantage in that 
a decomposition in partial fractions is not required and only a 
straightforward algebraic calculation has to be implemented. 

I”. SYMMETRIC THREE LAYER CONDUCTOR 

As an numerical example, a symmetric conductor consisting 
of three layers as shown in Fig. 1 is analyzed. The center 
conductor has a conductivity gz = 2.64 S/m and a thickness 
& = 32mm. The conductivity of the thin layer on the top 
undthebottomisl.32S/mauditsthicknessis4mm.Forthis 
structure, the elements of the impedance matrix are approxi- 
mated by rational fractions in the 8 domain according to sec- 
tion 111. The relative error of the magnitude us u function of 
frequency is shown in Fig. 3 and Fig. 4 for the impedances 
ZII and Ztz, respectively. The frequency in the diagram is 
nonualized to a reference frequency f,, where the skin depth 
is halfofthe conductor thickness 6. Whereas the impedance 
Z,, can be approximated with an error less than 0.045 % uver 
a wide frequency range, the impedance Zt, shows a larger 
error in a significant smaller frequency range. An error of 
0.35 % can only be achieved from DC to IO times the ref- 
erence frequency f,. The reason is that the exponential decay 
of the impedance Zt2 leads to an enormous increase of the 
error in the case of a polynomial approximation. 
The rational approximation of the surface impedance is not 

Figure 3: Relative error of 1Ztt1; frequency is normalized to 

f, = 4/(V&). 

Figure 4: Relative error of [ZIP I;frequency is normalized to 
fs = 4l(V&). 

limited to the thickness and conductivity given in the numeri- 
cal example. The method can also handle multilayer couduc- 
tars, where the top and bottom layers are extremly thin com- 
pared to the center conductor. However, a different relative 
error is obtained as u function of the frequency. 
Using the recursive convolution method, the scattering pa- 
rameters of the composite conductor with a total thickness of 
40mm were extracted from the FDTD simulation and com- 
pared to the analytic solution of the TEM problem. A cell 
size of I mm is chosen for the grid. The magnitude and the 
phase of the reflection coefficient is pictured in Fig. 5 and 
Fig. 6. The simulation results agree with the exact solution 
and only show u very small discrepancy at higher frequencies. 
The staircase approximation of the impedances in the time- 
domain causes au error in the convolution integrals at higher 
frequencies when the time-step approaches the Nyquist cri- 
terion. Futthemmre, the accuracy for the algebraic manipula- 
tions in the decomposition of the rational function into partial 
fractions is limited. The higher the degree of the polynomial 
the less accurate are the coefficients in the partial fractions 
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Figure 5: Scattering parameters of a symmetric three layer Figure 7: Symmetric three layer conductor: Reflection for a 
conductor. symmetric excitation using no correction term 
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A SIBC for multilayer conductor was introduced in this pa- 
per. The SIBC is based on the impedance matrix of a tmns- 
mission line network. A rational approximation enables a sta- 
ble and efficient recursive convolution method in FDTD. The 
proposed method has been tested with a symmetric three layer 
conductor and the scattering parameters were validated by the 
analytical solutions. Based on this method, transmission line 
losses in microwave circuits and electromagnetic compatibil- 
ity problems can be considered as well. 
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